第六次青年几何分析小组会议通知
发布时间: 2017-03-15 01:37:04 浏览次数: 供稿:数学系
演讲人:胡雪,季丹丹,徐旭
讲座时间:2017-04-11 14:00:00
讲座地点:信息楼0343
讲座内容

为了加强青年几何分析学者之间的交流和促进彼此的合作,我们邀请了来自暨南大学、福建师范大学和武汉大学的三位青年几何分析学者到9728太阳集团,于2017年4月11日下午和4月12日上午在9728太阳集团信息楼0343召开一个小型会议。非常欢迎有兴趣的老师和研究生来参加此次会议!

此次会议不收取注册费,鉴于财力,住宿费和交通费自理。

9728太阳集团

邀请人: 杨云雁、朱晓宝

Email: zhuxiaobao@amss.ac.cn

会议日程

会议地点:信息楼0343

会议安排:4月11日下午小组报告,4月12日上午自由讨论。

第一个报告:胡雪(暨南大学)

Time: 14:00~15:00

Title: On asymptotic expansions and curvature estimates for 4-dim conformally compact Bach flat manifolds

Abstract: We discuss the effect of the conformal infinity on a 4-dim conformally compact Bach flat manifold with constant scalar curvature. We show the asymptotic expansions of the 4-dim conformally compact Bach flat manifold near the conformal infinity and also give the curvature estimates.

第二个报告:季丹丹(福建师范大学)

Time:15:10~16:10

Title:Some research on isoperimetric surface of asymptotically hyperbolic manifolds

Abstract: In this talk, we will discuss our some joint with Y.G. Shi and B. Zhu. We focuses on the properties of isoperimetric surfaces in asymptotically hyperbolic manifold M with R≥-6 and the geometric relations between isoperimetric surfaces and asymptotically hyperbolic manifold. We prove that the isoperimetric regions with positive lower bounded volumes cannot drift off to the infinity of M provided that the asymptotically hyperbolic manifold M with R≥-6 is not standard hyperbolic space. Besides, we obtain a formula on expansion of isoperimetric profile in terms of renormalized under some conditions.

第三个报告:徐旭(武汉大学)

Time: 16:20~17:20

Title: On the global rigidity of sphere packings on 3-dimensional manifolds

Abstract: In this talk, we will give a proof of the global rigidity of sphere packings on 3-dimensional manifolds, which implies the uniqueness of hyperbolic structure on 4-dimensional manifolds. This is a 3-dimensional analogue of the rigidity in Andreev-Thurston theorem conjectured by Cooper and Rivin. We shall further study the global rigidity of the combinatorial scalar curvature introduced by Ge and the author.

演讲人简介